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Note 

The Evaluation of Oscillatory integrals with Infinite Limits 

In a wide number of applications in applied mathematics the problem arises of 
evaluating integrals of the type 

s 
co f(x) ;;; kx dx, (1) 

0 

where k is a constant. In certain circumstances, k may take large values and 
considerable difficulty is then experienced in computing the integral by conventional 
methods, due to the extremely strong cancellation of the positive and negative 
contributions from the rapidly oscillatory integrand. 

The conventional methods of approximatingf(x) by a low order polynomial, as 
proposed, for example, by Filon [l], Clendenin [2], and Flinn [3], do not apply 
here because of the infinite range. An alternative approach, adopted by Hurwitz 
and Zweifel [4], Hurwitz, Pfeifer, and Zweifel [5], Saenger [6], and Balbine and 
Franklin [7], is to subdivide the range and to integrate between the successive zeros 
of ,“Fi kx, thus, converting the infinite integral to a summation. The main objection 
to this approach is that the resulting series may converge slowly. An attempt to 
remedy this defect was made by Longman [8], who used a variation of Euler’s 
transformation to accelerate convergence. 

In the present work the possibility of using the more general nonlinear transfor- 
mation of Shanks [9] is investigated. 

The range of integration is subdivided in accordance with the half-cycles of the 
integrand into the subranges [a,, a,,,], n = 0, 1, 2,..., where in the case of the 
integrals (l), a,, is given by 

a, = m/k. (2) 

The rather more general oscillatory integrals 

.r 
om f(x) ;; kx2 dx, 

which arise in many applications are also treated here. For such integrals a, is given 
by 

a, = (n?r/k)1/2. 
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In both cases a low order Gauss-Legendre quadrature formula [IO] is employed 
to carry out the integrations over each half-cycle [a,, a,,,] according to the 
prescription 

lbg(x)dx= $(b-a)f w~g[~(b+u)+~(b-u)x~]+En. (5) n i=l 

This result represents the basic p-point Gauss-Legendre quadrature formula, 
E, being the associated error, and the weights w,; and abscissas xi are extensively 
tabulated by Stroud and Secrest [I 11. To minimize the contributions from 
truncation and round-off errors the intervals [a,, a,,,] were again subdivided 
uniformly and formula (5) was applied successively in each of the subintervals to 
yield the values 

T, = !“““” g(x) dx, (6) 
fl?L 

where g(x) represents the appropriate integrand from integrals (I) or (3). The most 
widely applied combination in practice was to use six 2-point rules in the interval 
bn > &,l 9 J although on some occasions twelve 2-point rules were employed for 
greater accuracy. 

The actual integrals required are, of course, given by 

A = f Ti, (7) 
i=O 

and the next section describes the application of the Shanks’ technique for 
accelerating the convergence of the partial sums 

A,,= i Ti. 
i=O 

(8) 

Shanks’ transformation involves the use of the operators ej which transform 
a given sequence {A,}, n = 0, I, 2 ,..., into the sequence {B,,,], n = j,j + I ,,j + 2 ,..., 
according to 

{%,I = e,{A,J. (9) 

The general term in {Bj,,} is given as the ratio of two determinants of order (n + 1) 
in Shanks’ paper where details of restrictions imposed and conditions to be 
satisfied in the use of the operators are specified. The most frequently used transfor- 
mation is e, which produces the particularly simple result 

B 1.n = G&+1&-1 - -4Wn+1 + Arc-1 - 2AnF1. (10) 
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The first application concerns the evaluation of the integral 

sin kx dx = k(a2 + /2)-l. (11) 

In this case the terms of the sequence {A,} are easily evaluated analytically, 
yielding 

A, = k(n? + k2)-l{l - (- l)n+l exp[-(n + l)cYrr/k]}. (W 

The geometric convergence of this sequence implies immediate convergence of the 
sequence er{A,} to the exact limiting value, that is B,,, = k(c2 + k2)-l for all n. 
On the other hand, it is easily shown that the well known Euler transformation [8] 
produces a sequence which converges less quickly than even the original sequence 
{A,}, for values of (Y which are greater than the critical value (k In 3)/n. The Euler 
transformation does, in fact, produce accelerated convergence for 01 less than the 
critical value, but is, of course, always inferior to the immediately converging 
Shanks’ transformation. The implication of this result is that the Shanks’ transfor- 
mation is extremely powerful in dealing with integrals where T,, exhibits predomi- 
nantly exponential decay. 

As a practical example of this class of integral, consideration is given to 

z2=JX x-l exp(-x/2) sin x dx = tan-l 2 = 1.107149... . (13) 0 

The transformation e, was applied iteratively to the sequence {A,} to give the 
sequences e,{A,}, e12{An},..., the first few members of which are shown in Table I. 
For comparison purposes, Euler’s transformation was applied to the terms T, to 
produce the sequence of partial sums {E,}. 

TABLE I 
Successive Sequences for Evaluating I, 

0 1.148148 1.148148 0.574074 
1 -0.045820 1.102328 0.849656 1.107254 
2 0.005519 1.107847 0.982409 1.107141 1.107149 
3 -0.000809 1.107038 I .046562 1.107150 
4 0.000130 1.107163 1.077652 

The half-cycle contributions, T,, , were evaluated over [nr, (n + l)z~] using 
twelve 2-point Gauss-Legendre formulas. It will be noted that the Euler sequence 
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{E,} converges less well than the original sequence {A,}. In contrast el{Anf converges 
extremely rapidly and er2{A,} converges immediately to the limiting value. Further, 
the transformation e2 could also be applied to (A,} and again yields the limiting 
value immediately, namely B,,, = 1.107149... . A further example involving a 
different family of integrals is 

I3 = s a x-~ sin x dx = -ci(r) = -0.073668... , (14) 
n 

where ci is the cosine integral as defined by Gradshteyn and Ryzhik [12]. The 
results are demonstrated in Table II. 

TABLE II 
Successive Sequences for Evaluating I, 

n Tll 

0 -9.6230 -9.6230 
1 3.3180 - 6.3049 
2 -1.6737 -7.9786 
3 I .0078 ~ 6.9708 
4 -0.6730 - 7.6439 
5 0.4812 -7.1626 
6 -0.3612 - 7.5238 

En 

-4.8115 
-6.3877 
-7.5529 
-7.4305 
-7.3901 
-7.3614 
-7.3651 

44J 

- 7.3496 
-7.3744 
-7.3633 
~ 7.3689 
-7.3657 

elVnl 

-7.3677 
-7.3667 
-7.3670 

e13MJ 

--7.3669 

x to-2 x10-2 x IO-” x10-2 x10-2 x IO-’ 

The half-cycle contributions, T, , were evaluated over [(n + l)~, (n + 2)n] 
using six 2-point Gauss-Legendre formulas. 

It will be observed once more that the Shanks’ transformations give rise to 
sequences which converge more rapidly than that produced by the Euler method. 

As a final example, the integral 

z*= * 
.r 

x2 sin 100x2 dx, (15) 
0 

which converges in the mean only (in the Abel sense) is considered. The exact result 
is 

Z4 = (7~/2)~/~/4000 = 3.133285... x 10-4, (16) 

which is readily obtained by standard integration, using the integrating factor 
exp(--yx2) as y tends to zero. The numerical results are shown in Table III. 
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TABLE 111 

Successive Sequences for Evaluating I, 

n T7t 
~____ 

I .2177 

-2.1650 

2.7998 

-3.3143 

3.7588 

-4.1560 

4.5182 

-4.8535 

5.1671 

“f, 

1.2177 6.0883 

-0.9414 3.7199 

1.8525 3.3292 

-1.4619 3.2090 

2.2970 3.1647 

-1.8590 3.1468 

2.6593 3.1392 

-2.1943 3.1359 

2.9728 3.1344 

2.7356 

3.3475 3.1236 

2.9944 3.1366 3.1330 

3.2324 3.1317 3.1332 3.1332 

3.0517 3.1340 3.1332 

3.1931 3.1327 

3.0842 

x10-3 x IO-3 x10-1 xlOmd x 10-a x10-4 x 10-4 

The half-cycle contributions, T, , were evaluated with a, = (nn/100)1/2 using 
twelve 2-point Gauss-Legendre formulas. It is noticed in this case that the original 
sequence {A,} is divergent. The Euler transformation produces the sequence {I&} 
which is slowly convergent. The sequence e,{A,} is also seen to be slowly convergent, 
but when the operator e, is used iteratively, the successive sequences 
e12{An}, e13{An},... are seen to be converging rapidly. The application of the operator 
e2 to the original sequence {A,} produces the sequence (3.1268, 3.1354, 3.1322, 
3.1337, 3.1329,... x lo-*} and e22 produces 3.1332 x IO-* as its first term. 

In conclusion, it appears that the Shanks’ acceleration technique is a powerful 
tool for the evaluation of oscillatory integrals with an infinite range. This is 
particularly true when the oscillations are damped in a predominantly exponential 
manner or fall off, for example, as l/x” where p is sufficiently large (say p 2 1). In 
these cases Shanks’ technique proves more economical in terms of function eval- 
uations than the well known Euler transformation. However, when the higher 
order difference terms in the Euler formula are small (for example, when the 
convergence is very slow or when polynomial behavior is exhibited) the Euler 
method converges extremely rapidly. 

Also, for integrals which converge in the mean only, Shanks’ method proves 
successful, and may again converge more rapidly than Euler’s transformation, 
depending on the behavior of the original sequence. 
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